|
How WLANs Work A wireless LAN (WLAN) is a flexible data communication system implemented as an extension to, or as an alternative for, a wired LAN within a building or campus. Using electromagnetic waves, WLANs transmit and receive data over the air, minimizing the need for wired connections. Thus, WLANs combine data connectivity with user mobility, and, through simplified configuration, enable movable LANs. Over the last seven years, WLANs have gained strong popularity in a number of vertical markets, including the health-care, retail, manufacturing, warehousing, and academic arenas. These industries have profited from the productivity gains of using hand-held terminals and notebook computers to transmit real-time information to centralized hosts for processing. Today WLANs are becoming more widely recognized as a general-purpose connectivity alternative for a broad range of business customers. The U.S. wireless Lan market is rapidly approaching $1 billion in revenues WLANs and other Wireless Technologies Multiple radio carriers can exist in the same space at the same time without interfering with each other if the radio waves are transmitted on different radio frequencies. To extract data, a radio receiver tunes in (or selects) one radio frequency while rejecting all other radio signals on different frequencies. In a typical WLAN configuration, a transmitter/receiver (transceiver) device, called an access point, connects to the wired network from a fixed location using standard Ethernet cable. At a minimum, the access point receives, buffers, and transmits data between the WLAN and the wired network infrastructure. A single access point can support a small group of users and can function within a range of less than one hundred to several hundred feet. The access point (or the antenna attached to the access point) is usually mounted high but may be mounted essentially anywhere that is practical as long as the desired radio coverage is obtained. End users access the WLAN through wireless LAN adapters, which are implemented as PC cards in notebook computers, or use ISA or PCI adapters in desktop computers, or fully integrated devices within hand-held computers. WLAN adapters provide an interface between the client network operating system (NOS) and the airwaves (via an antenna). The nature of the wireless connection is transparent to the NOS. Bluetooth technology is a forthcoming wireless personal area networking (WPAN) technology that has gained significant industry support and will coexist with most wireless LAN solutions. The Bluetooth specification is for a 1 Mbps, small form-factor, low-cost radio solution that can provide links between mobile phones, mobile computers and other portable handheld devices and connectivity to the internet. This technology, embedded in a wide range of devices to enable simple, spontaneous wireless connectivity is a complement to wireless LANs � which are designed to provide continuous connectivity via standard wired LAN features and functionality.
Table of Contents
|